Bodhi P. Vani

Contact bvani@umd.edu

Citizenship India

Education	University of Chicago PhD in Chemistry, M.S. in Chemistry 2015-2021
	Indian Institute of Technology, Bombay M.Sc. in Chemistry, minor in Physics 2010-2015
Research Interests	I apply and develop machine learning techniques with enhanced sampling algorithms to systems of biological and medical significance. With my rigorous background in stochastic processes and statistical mechanics, as well as experience with biomolecules, and a growing repertoire of deep learning methods, I aim to use applied mathematics and computation molecular biophysics to improve human health through drug discovery. My current research focuses on solving the so-called separation of timescales with intelligently learned latent spaces.
Current Position	Post-Doctoral Scientist Institute of Physical Science and Technology, University of Maryland, College Park
Research Experience	 University of Maryland, College Park Primary Investigator: Prof. Pratyush Tiwary Developing a computational drug design pipeline based on machine learning algorithms and enhanced sampling methods Developing a graph attention network based model to predict ligandability in proteins Extending the use of structure prediction algorithms to obtain conformationally diverse structures and guide sampling to obtain relevant states with Boltzmann weights Exploring native state conformational changes and stabilities to identify druggable pockets for the kinase family of molecules Explaining and predicting optimal lengths of disordered regions in CAR T-Cell therapies using machine learning models Combining equivariant graph neural networks with variational autoencoders to learn bias collective variables without handpicked a priori information
	 University of Chicago Advisors: Prof. Aaron R. Dinner, Prof. Jonathan Q. Weare Developed an algorithm to accelerate the computation of Feynman-Kac equations using trajectory stratification Derived methods to compute Transition path Theory quantities using trajectory stratification Studied the folding and unfolding mechanism of the Insulin dimer by deducing key collective variables and residues involved Developed a methodology to approach coupled folding-binding problems using a combination of sampling techniques with experimental collaboration
	Indian Institute of Technology, Bombay: Master's thesisGuide: Prof. B. L. Tembe2014-2015• Studied the local structures and potential energies of a pair of neopentane molecules in aqueous solutions of taurine, urea, urea-taurine in comparison with pure water using constrained dynamics

	Tata Institute of Fundamental Research: Summer internshipGuide: Prof. Ravi VenkataramaniSummer 2013• Studied the aggregation of amino acids in water in collaboration with an experimental groupusing the transition path sampling algorithm
	Indian Institute of Technology, Bombay: Summer InternshipGuide: Prof. Arindam ChowdhuryMay- July 2012• Tracked and analyzed the fluorescence spectra of a dye in motion in a polymer layer medium.• Resolved the single molecule spectra of the polar dye using computational image processing methods to derive the orientation of the molecules in polar coordinates and monitor rotational motion of the molecule in long time scales.
	Indian Institute of Technology, Bombay: Summer InternshipGuide: Prof. Y. U. SasidharMay- July 2011• Studied the hairpin forming tendencies of a polymer by simulating several mutants and characterizing folding behavior.
Service & Outreach	Machine learning and pytorch training group Organized and co-lead a weekly machine learning workshop for graduate students and post-doctoral fellows with a focus on AI for science - 2023
	Peer reviewer for publications Proteins: Structure, Function, and Bioinformatics - 2022 Physical Review Letters - 2023
	Expanding your Horizons: Science outreach for highschool girls with aptitude in science Supervised a group of 10 students through all their workshops - 2017 Developed and conducted a workshop on material properties - 2018
	Computational Chemistry - University of Chicago Spring 2016 Conducted weekly help sessions, developed, graded, and edited assignments, provided support with final project
	General Chemistry & General Chemistry Honors- UChicago Fall 2015, Winter 2016 Conducted weekly discussion sessions and lab sessions
	Freshman Quantum Chemistry Course- IIT Bombay Fall 2014 Conducted weekly tutorials for a 45-student class Single-handedly conducted regular help-sessions for a class of over 200
Conferences & Symposia	MolSSI workshop: Machine Learning and Chemistry: Are We There Yet? May 31-June 2, 2023
	Rare Events Workshop: Analysis, Numerics, and Applications February 27-March 3, 2023
	Protein Dynamics Gordon Research Conference October 23rd-28th, 2022 <i>Awarded prize for best poster</i>
	Protein Dynamics Gordon Research Symposium

October 21st-23rd, 2022

Physical Review Letters Journal Club: *State-of-the-art estimation of protein model accuracy* December 5, 2022 *Invited to moderate panel discussion*

Berkeley Statistical Mechanics Meeting January 11th-14th, 2018

Midwest Theoretical Chemistry Conference June 21st-23rd, 2018

8th CRSI-RSC joint Symposium in Chemistry February 6th, 2014

16th CRSI National Symposium in Chemistry February 7th-9th, 2014

14th CRSI-NCL Theoretical Chemistry Symposium December 18th-21st, 2014

Publications AlphaFold2-RAVE: From sequence to Boltzmann ensemble Bodhi P. Vani, Akashnathan Aranganathan, Dedi Wang, Pratyush Tiwary. J. Chem. Theory Comput. 2023; https://doi.org/10.1021/acs.jctc.3c00290

Graph Attention Site Prediction (GASP): Identifying Ligandable Binding Sites with Graph Attention Networks

Zachary Smith, Bodhi P. Vani, Michael Strobel, Pratyush Tiwary In preparation

Hinging on Success: Leveraging the Power of CAR T-Cell Therapy through In-Silico Modeling of Hinge Length and Epitope Location

Justin M. Mirazee, Akashnathan Aranganathan, Bodhi P. Vani, Pratyush Tiwary, Gregoire Altan-Bonnet, Naomi Taylor *In preparation*

Computing transition path theory quantities with trajectory stratification Bodhi P. Vani, Jonathan Weare, and Aaron R. Dinner. *Journal of Physical Chem.* 157, 034106 (2022)

Molecular dynamics simulations of nucleotide release from the circadian clock protein KaiC reveal atomic-resolution functional insights

Lu Hong, Bodhi P. Vani, Erik H. Thiede, Michael J. Rust, Aaron R. Dinner. *Proceedings of the National Academy of Sciences* Dec 2018, 115 (49)

Insulin Dissociates by Diverse Mechanisms of Coupled Unfolding and Unbinding Adam Antoszewski, Chi-Jui Feng, Bodhi P. Vani, Erik H. Thiede, Lu Hong, Jonathan Weare, Andrei Tokmakoff, and Aaron R. Dinner. *The Journal of Physical Chemistry B* 2020

Long-timescale predictions from short-trajectory data: benchmark analysis of a miniprotein John Strahan, Adam Antoszewski, Chatipat Lorpaiboon, Bodhi P. Vani, Jonathan Weare, Aaron R. Dinner. *Journal of Chemical Theory and Computation* 2021, 17, 5, 2948–2963

Accelerating computations of Large Deviation Functions using non-equilibrium stratification Bodhi P. Vani, Jonathan Weare, and Aaron Dinner *in preparation*

Scholarships & Awards	The Danute Nitecki graduate fellowship - 2018 University of Chicago
	Gordon Research Conference Best Poster 2022 Protein folding and dynamics conference
	INSPIRE: Science fellowship 2010-2015 awarded by the Department of Science and Technology, Government of India
References	Prof. Pratyush Tiwary , Post-doctoral Advisor University of Maryland, Institute of Physical Science and Technology ptiwary@umd.edu.edu
	Prof. Aaron R Dinner , Ph.D Advisor University of Chicago, Department of Chemistry dinner@uchicago.edu
	Prof. Jonathan Weare , Ph.D Co-advisor Courant Institute of Mathematical Sciences, NYU weare@cims.nyu.edu
	Prof. Suriyanarayan Vaikuntanathan . Ph.D Committee member University of Chicago, Department of Chemistry svaikunt@uchicago.edu